METODE SIMPLE ADDITIVE WEIGHTING DALAM SISTEM PENDUKUNG KEPUTUSAN PENENTU PRIORITAS PERBAIKAN JARINGAN INTRA PEMERINTAH

Muhammad Pasca Widiatmaka¹, Muhammad Sohari²

Sistem Informasi¹, Universitas Muhammadiyah Banten¹ Sistem Informasi², Universitas Muhammadiyah Banten² E-mail: muhpasca@gmail.com¹, sohari88@gmail.com²

ABSTRAK

Pemerintah daerah dituntut untuk memberikan kemudahan dalam melayani masyarakat. Pemerintah Kota Serang pada khususnya menginginkan masyarakat mendapat kemudahan, baik dari segi proses maupun alur pelayanan dengan mengaplikasikan layanan elektronik. Untuk menunjang komunikasi data antara Organisasi Perangkat Daerah ke pusat data maupun Server aplikasi diperlukan jaringan yang stabil. DISKOMINFO Kota Serang dalam hal ini Bidang Kominfo membidangi instalasi, perbaikan, dan pengembangan infrastruktur teknologi informasi dan komunikasi termasuk infrastruktur jaringan. Dinas Komunikasi dan Informatika Kota Serang melayani lebih dari 200 titik jaringan, ditambah lagi dengan permohonan atau penambahan jaringan beradasarkan kegiatan yang bersifat sementara. Untuk menunjang kelancaran jaringan Bidang Kominfo memiliki keterbatasan sumber daya manusia dan keterbatasan anggaran. Pada pelaksanaan sering terjadi keterlambatan penanganan gangguan jaringan, jika ada lebih dari 2 gangguan sehari. Ditambah lagi dengan adanya pelebaran jaringan baru maupun instalasi ulang jaringan di lokal kantor organisasi pemerintah daerah, dan beberapa kegiatan yang bersifat mendadak yang harus segera difasilitasi. Untuk meminimalisir terganggunya pelayanan kepada masyarakat, maka perlu adanya suatu sistem yang dapat menyajikan prioritas penanganan gangguan jaringan di lingkungan pemerintah Kota Serang dengan Metode Simple Additive Weighting (SAW). Sistem ini dapat membantu untuk meminimalisir keterlambatn penanganan di lebih dari 200 titik jaringan.

Kata kunci: Sistem Pendukung Keputusan, Simple Additive Weighting, perbaikan jaringan, pemerintah Kota Serang, jaringan intra pemerintah.

ABSTRACT

Local governments are responsible for providing convenience to the community. Specifically, the Serang City Government aims to enhance this convenience through the implementation of electronic services, ensuring smooth processes and service flows. To facilitate effective data communication between Regional Apparatus Organizations, data centers, and application servers, a stable network is essential. The Serang City Communication and Information Service, particularly the Kominfo Division, is tasked with the installation, maintenance, and development of information and communication technology infrastructure, including network systems. The Serang City Communication and Information Service manages over 200 network points and handles requests for additional networks related to temporary activities. However, the Kominfo Division faces challenges, including limited human resources and budget constraints. Consequently, network disturbances often result in delays in response if there are more than two incidents in a single day. This situation is compounded by the expansion of new networks, the need for reinstallation of networks in local government offices, and urgent requests from leadership that must be prioritized. To reduce service disruptions for the community, it is crucial to develop a system that prioritizes the handling of network disturbances within the Serang City government using the Simple Additive Weighting (SAW) method. This system can help minimize delays in addressing issues across the existing network points, particularly those that are integrated into the community services of Serang City.

Key word: Decision Support Systems, Simple Additive Weighting, repairing Network, Serang City government, intra-government Networks.

PENDAHULUAN

Pada era digital saat ini pemerintah daerah dituntut untuk memberikan kemudahan pada pelayanan kepada masyarakat (Konsultan, 2022; Peraturan Presiden, 2018). Pemerintah Kota Serang pada khususnya menginginkan pelayanan digital yang diberikan memberi kemudahan bagi masyarakat(Konsultan, 2022; PERPRES, 2023). Untuk menunjang komunikasi data antara Organisasi Perangkat Daerah ke pusat data maupun Server aplikasi diperlukan jaringan yang stabil dan mudah diakses. Bidang Kominfo di dalam Dinas Komunikasi dan Informatika Kota Serang bertanggung jawab menjalankan instalasi, perbaikan, dan pengembangan infrastruktur teknologi informasi dan komunikasi termasuk infrastruktur jaringan (Kota Serang, 2017).

JoiTechs (Journal Of Information Technology and Computer Science) Vol. 2 No. 1 (2025)

Jaringan yang tersebar di seluruh Kota Serang dengan luas wilayah 266,77 Km2. Infrastruktur jaringan terluar masih menggunakan teknologi wireless (radio) yang rentan dengan gangguan. Jaringan intra pemerintahan Kota Serang memiliki lebih dari 200 titik akses baik berupa akses internet maupun akses cctv. Sumber daya manusia teknis jaringan Dinas Komunikasi dan Informatika Kota Serang terdiri dari 1 Pranata komputer, 2 Pelaksana, 8 tenaga harian lepas. Dengan rasio tenaga yang ada, gangguan yang berskala berat ditangani lebih dari 4 orang, kerusakan sedang minimal 2 orang, kerusakan ringan 1 orang untuk penanganan gangguan. Sering terjadi gangguan jaringan lebih dari 4 gangguan perhari.

Percepatan koordinasi yang harus dilaksanakan untuk menunjang perbaikan jaringan untuk penyaluran data dengan maksimal. Koordinasi sangatlah penting untuk mempercepat perbaikan apabila ada gangguan jaringan pada pelayanan publik agar masyarakat mendapatkan pelayanan yang cepat dan efektif. Untuk memberikan akses data yang maksimal perlu adanya pembagian prioritas penanganan, apabila terjadi banyak gangguan dalam satu hari. Untuk mempermudah penanganan gangguan jaringan perlu dilakukan penyortiran gangguan berdasar prioritas.

Tuntutan percepatan perbaikan jaringan terkendala dengan teknisi jaringan yang tersedia tidak selaras dengan jumlah titik akses dan gangguan jaringan. Untuk menyelesaikan permasalahan yang ada diperlukan sebuah sistem pendukung keputusan menggunakan metode Simple Additive Weighting (SAW). Berikut beberapa sumber referensi yang digunakan dalam penelitian ini;

- Penelitian Mardheni Muhammad, Novi Safriadi, Narti Prihartini dengan judul "Implementasi Metode Simple Additive Weighting (SAW) pada Sistem Pendukung Keputusan dalam Menentukan Prioritas Perbaikan Jalan" (Mardheni, Safriadi, & Prihartini, 2017).
- Penelitian Rezqiwati Ishak dengan judul "Sistem Pendukung Keputusan Pemilihan Penyuluh Lapangan Keluarga Berencana Teladan Dengan Metode Weighted Product "(Ishak, 2016).
- Penelitian Harsiti, Hendri Aprianti dengan judul "Sistem Pendukung Keputusan Pemilihan Smartphone dengan Menerapkan Metode Simple Additive Weighting (SAW)" (Harsiti & Aprianti, 2017).

METODE

Penelitian ini menggunakan metode kualitatif, pada dasarnya landasan teoritis dari penelitian kualitatif bertumpu secara mendasar pada normatif. Dimana sistem pendukung keputusan (SPK) (Sari, 2023) dengan metode Simple Additive Weighting (SAW) (Mardheni, Safriadi, & Prihartini, 2017) ini sering juga dikenal istilah metode

JoiTechs (Journal Of Information Technology and Computer Science) Vol. 2 No. 1 (2025)

penjumlahan terbobot. Konsep dasar metode Simple Additive Weighting adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut(Kusumadewi, 2006). Dengan perhitungan sebagai berikut;

 $r_{ij} \begin{cases} \frac{X_{ij}}{Max_i X_{ij}} & \textit{Jika j adalah atribut keuntungan (benefit)} \\ \frac{Min_i X_{ij}}{X_{ij}} & \textit{Jika j adalah atribut biaya (cost)} \end{cases}$

Keterangan:

 r_{ij} : nilai rating kinerja ternormalisasi

 X_{ij} : nilai atribut yang dimiliki dari setiap kriteria

 $Max_i X_{ij}$: nilai terbesar dari setiap kriteria $Min_i X_{ij}$: nilai terkecil dari setiap kriteria Benefit: jika nilai terbesar adalah terbaik Cost: jika nilai terkecil adalah terbaik

dimana r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_j ; I: 1, 2, ..., m dan j: 1, 2, ..., n. Nilai preferensi untuk setiap alternatif (V_i) diberikan sebagai:

$$V_i = \sum_{j=1}^n W_j r_{ij} \tag{2}$$

Keterangan:

 V_i = rangking untuk setiap alternatif W_j = nilai bobot dari setiap kriteria = nilai rating kinerja ternormalisasi

Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih.

Penelitian dilaksanakan dalam renatang bulan juli 2023 sampai dengan september 2023 dengan area penelitian Dinas Komunikasi dan Informatika Kota Serang. Pengumpulan data dilakukan di bulan juli 2023. Pengumpulan data dilakukan untuk memperoleh informasi yang dibutuhkan dalam rangka mencapai tujuan penelitian. Tujuan yang diungkapkan dalam bentuk hipotesis merupakan jawaban sementara terhadap pertanyaan penelitian. Berikut teknik pengumpulan data yang digunakan dalam peneletian ini;

I. Observasi Parsitipasi

Merupakan pengamatan yang dilakukan di mana peneliti ikut berpartisipasi dalam kegiatan yang dilakukan kelompok yang diteliti. Peneliti ikut melakukan aktifitas atau kegiatan yang sedang dilakukan kelompok yang diteliti. Jadi meski sedang mengamati, peneliti tidak hanya menonton tapi juga ikut membaur(Retna Siwi Padmawati,2023).

II. Dokumen.

Teknik pengumpulan data dengan dokumentasi merupakan Teknik pengumpulan data yang diambil dari dokumen atau catatan peristiwa yang sudah berlalu. Dokumen dapat berbentuk tulisan, gambar, atau karya-karya monumental dari seseorang. Penulis mengumpulkan dokumen kaitan laporan gangguan jaringan untuk membantu dalam pembuatan sistem baik bentuk surat maupun chat dari pengguna.

JoiTechs (Journal Of Information Technology and Computer Science) Vol. 2 No. 1 (2025)

III. Wawancara

Pertanyaan wawancara ini berfungsi untuk menjawab rumusan masalah pada penelitian, pembobotan, kriteria dan semua data penunjang dalam penelitian.

HASIL DAN PEMBAHASAN

Kebutuhan input terdiri dari beberapa penentuan kriteria laporan gangguan jaringan yang merupakan langkah pertama dalam Metode Simple Additive Weighting, berikut tahapan penelitian berdasar hasil teknik pengumpulan data yang sebelumnya telah dilaksanakan.

1. Menentukan kriteria

Tabel 1. Daftar Kriteria dan Sifat Kriteria

No	Kode Kriteria	Keterangan	Jenis Kriteria	Bobot	
1	C1	Instruksi Atasan	Benefit	40%	
2	C2	Jenis Instansi	Benefit	30%	
3	C3	Jenis Kerusakan	Benefit	15%	
4	C4	Jarak Lokasi	Cost	10%	
5	C5	Ketersediaan	Benefit	5%	
3		Alat	Delicili	3%0	

Total bobot apabila dijumlahkan menjadi 100%

2. Menentukan Bobot Preferensi berdasarkan Kriteria

Preferensi kriteriadengan bobot nilai yakni, sangat diprioritaskan sekali (5), sangat diprioritaskan (4), prioritas (3), kurang diprioritaskan (2), sangat kurang diprioritaskan (1) Metode Simple Additive Weighting membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua alternatif yang ada.

Tabel 2. Alternatif

Alternatif	Instansi Pelapor	Instruksi	Jenis	Jarak	Ketersediaan
(A)		Atasan	Kerusakan	Lokasi	Alat
A1	Dinas Komunikasi dan	Biasa	Berat	Jauh	Tersedia
	Informatika				
A2	Dinas Kependudukan	Segera	Berat	Terjangkau	Tersedia
	dan Catatan Sipil				
A3	Dinas Kependudukan	Biasa	Sedang	Terjangkau	Dipersiapkan
	dan Catatan Sipil				
A4	Dinas Perdagangan	Biasa	RIngan	Dekat	Tersedia
	Industri Koperasi				

Penentuan Kriteria telah diuraikan di bagian Analisis Kebutuhan Input dan Output.

- Alternatif laporan 1 (A1):
 - Instruksi Atasan 1, Jenis Instansi 5, Kerusakan 5, Jarak 5, Alat 5.
- Alternatif laporan 2 (A2):

Instruksi Atasan5, Jenis Instansi 5, Kerusakan 5, Jarak 3, Alat 5.

- Alternatif laporan 3 (A3):
 Instruksi Atasan 1, Jenis Instansi 5, Kerusakan 3, Jarak 3, Alat 1.
- Alternatif laporan 4 (A4):
 Instruksi Atasan 1, Jenis Instansi 5, Kerusakan 1, Jarak 1, Alat 5.

Dari data tersebut dapat dipetakan pemberian nilai pada setiap alternatif untuk setiap kriteria sebagai berikut :

Tabel 3.	Alternatif	setian	Krit	eria

4.14					
Alternatif	C1	C2	C3	C4	C5
A1	1	5	5	5	5
A2	5	5	5	3	5
A3	1	5	3	3	1
A4	1	5	1	1	5

IV. Matrik Keputusan

Matriks Keputusan adalah matriks yang dibentuk dari hasil table penilaian setiap alternatif atau table rating kecocokan. Dihasilkan Matrik X dari hasil penilaian alternatif.

$$A = \begin{pmatrix} 1 & 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 3 & 5 \\ 1 & 5 & 3 & 3 & 1 \\ 1 & 5 & 1 & 1 & 3 \end{pmatrix}$$

Normalisasi dari matrik keputusan data sampel tersebut, yakni;

$$A = \begin{pmatrix} r^{11} & r^{12} & r^{13} & r^{14} & r^{15} \\ r^{21} & r^{22} & r^{23} & r^{24} & r^{25} \\ r^{31} & r^{32} & r^{33} & r^{34} & r^{35} \\ r^{41} & r^{42} & r^{43} & r^{44} & r^{45} \end{pmatrix}$$

$$r^{11} = \frac{1}{\max(1,5,1,1)} = \frac{1}{5} = 0,20$$

$$r^{12} = \frac{5}{\max(5,5,5,5)} = \frac{5}{5} = 1,00$$

$$r^{13} = \frac{5}{\max(5,5,3,1)} = \frac{5}{5} = 1,00$$

$$r^{14} = \frac{\min(5,3,3,1)}{5} = \frac{1}{5} = 0,20$$

$$r^{15} = \frac{5}{\max(5,5,1,5)} = \frac{5}{5} = 1,00$$

$$r^{21} = \frac{5}{\max(1,5,1,1)} = \frac{5}{5} = 1,00$$

$$r^{22} = \frac{5}{\max(5,5,5,5)} = \frac{5}{5} = 1,00$$

$$r^{23} = \frac{5}{\max(5,5,3,1)} = \frac{5}{5} = 1,00$$

$$r^{24} = \frac{\min(5,3,3,1)}{3} = \frac{1}{3} = 0,30$$

$$r^{25} = \frac{5}{\max(5,5,1,5)} = \frac{5}{5} = 1,00$$

$$r^{31} = \frac{1}{\max(1,5,1,1)} = \frac{1}{5} = 0,20$$

$$r^{32} = \frac{5}{\max(5,5,5,5)} = \frac{5}{5} = 1,00$$

$$r^{33} = \frac{3}{\max(5,5,3,1)} = \frac{3}{5} = 0,60$$

$$r^{34} = \frac{\min(5,3,3,1)}{3} = \frac{1}{3} = 0,30$$

$$r^{35} = \frac{1}{\max(5,5,1,5)} = \frac{1}{5} = 1,00$$

$$r^{41} = \frac{1}{\max(1,5,1,1)} = \frac{1}{5} = 0,20$$

$$r^{42} = \frac{5}{\max(5,5,5,5)} = \frac{5}{5} = 1,00$$

$$r^{43} = \frac{1}{\max(5,5,3,1)} = \frac{1}{5} = 0,20$$

$$r^{44} = \frac{\min(5,3,3,1)}{1} = \frac{1}{1} = 1,00$$

$$r^{45} = \frac{5}{\max(5,5,1,5)} = \frac{5}{5} = 1,00$$

JoiTechs (Journal Of Information Technology and Computer Science) Vol. 2 No. 1 (2025)

Hasil nilai total matrik ternormalisasi;

$$A = \begin{pmatrix} 0.20 & 1.00 & 1.00 & 0.20 & 1.00 \\ 1.00 & 1.00 & 1.00 & 0.33 & 1.00 \\ 0.20 & 1.00 & 0.60 & 0.33 & 0.20 \\ 0.20 & 1.00 & 0.20 & 1.00 & 1.00 \end{pmatrix}$$

Selanjutnya melakukan proses perangkingan dengan cara mengalikan matrik ternormalisasi (R) dengan nilai bobot (W);

➤ Alternatif laporan 1 (A1):

$$= (0.20 * 40\%) + (1.00 * 30\%) + (1.00 * 15\%) + (0.20 * 10\%) + (1.00 * 5\%)$$

Alternatif laporan 1

$$= (A1): 0.08+0.30+0.15+0.02+0.05=0.6$$

Alternatif laporan 2 (A2):

$$=(1.00*40\%)+(1.00*30\%)+(1.00*15\%)+(0.33*10\%)+(1.00*5\%)$$

Alternatif laporan 2

$$= (A2):0.40+0.30+0.15+0.03+0.05=0.93$$

➤ Alternatif laporan 3 (A3):

$$=(0.20*40\%)+(1.00*30\%)+(0.60*15\%)+(0.33*10\%)+$$
 (0.20*5%)

Alternatif laporan 3

$$= (A3): 0.08+0.30+0.09+0.03+0.01=0.51$$

Alternatif laporan 4 (A4):

$$= (0.20 * 40\%) + (1.00 * 30\%) + (0.20 * 15\%) + (1.00 * 10\%) + (1.00 * 5\%)$$

Alternatif laporan 4

$$= (A4): 0.08+0.30+0.03+0.10+0.05 = 0.56$$

Setelah memperoleh hasil perhitungan vektor V dilakukan pemrioritasan gangguan dengan perangkingan diurutkan dengan cara descending.

Tabel 4. Pemrioritasan

No	Alternatif	Laporan	Vektor
	(A)		V
1	A2	Laporan 2	0.93
2	A1	Laporan 1	0.6
3	A4	Laporan 4	0.56
4	A3	Laporan 3	0.51

Berdasarkan hasil perhitungan diatas, maka prioritas tertinggi laporan gangguan jaringan terdapat di alternatif (A2) pada laporan gangguan jaringan Dinas Kependudukan dan Catatan Sipil yang memiliki kerusakan berat dengan lokasi yang terjangkau dan alat tersedia dengan nilai 0.93.

ARTIKEL PENELITIAN

JoiTechs (Journal Of Information Technology and Computer Science) Vol. 2 No. 1 (2025)

Tabel 5. Hasil Kuensioner

No	Pernyataan		Jawaban					
INO	remyataan	SS x 5	S x 4	N x 3	TS x 2	STS x 1		
1	Apakah aplikasi penanganan gangguan jaringan berdasar skala prioritas diperlukan?	20	16	6	0	0	42	
2	Apakah aplikasi ini dapat menampilkan daftar gangguan jaringan berdasar skala prioritas dengan benar?	10	24	3	2	0	39	
3	Apakah penyajian informasi memudah dipahami dan gampang dalam mencari informasi data gangguan?	5	20	9	2	0	36	
4	Apakah tampilan aplikasi penanganan gangguan jaringan ini menarik?	10	16	6	2	1	35	
5	Apakah menu - menu yang disediakan mudah dipahami?	30	12	3	0	0	45	
6	Apakah aplikasi ini memudahkan dalam penanganan gangguan jaringan?	35	8	3	0	0	46	
7	Apakah aplikasi ini dapat menilai prioritas penanganan gangguan jaringan?	40	4	3	0	0	47	
8	Apakah aplikasi ini sudah baik?	25	12	3	2	0	42	

Tabel 6. Data Jawaban Kuesioner

Pernyataan		Jawaban				Persentase				
•	SS	S	N	TS	STS	SS	S	N	TS	STS
Pernyataan pertama	4	4	2	-	-	40%	40%	20%	0%	0%
Pernyataan kedua	2	6	1	1	-	20%	60%	10%	10%	0%
Pernyataan ketiga	1	5	3	1	-	10%	50%	30%	10%	0%
Pernyataan keempat	2	4	2	1	1	20%	40%	20%	10%	10%
Pernyataan kelima	6	3	1	-	-	60%	30%	10%	0%	0%
Pernyataan keenam	7	2	1	-	-	70%	20%	10%	0%	0%
Pernyataan ketuju	8	1	1	-	-	80%	10%	10%	0%	0%
Pernyataan kedelapan	5	3	1	1	-	50%	30%	10%	10%	0%

Keterangan bobot hasil yakni Sangat Setuju (5), Setuju (4), Netral (3), Tidak Setuju (2), Sangat Tidak Setuju (1). Data yang diolah dengan cara mengalikan setiap poin jawaban dengan bobot yang sudah ditentukan sesuai dengan tabel bobot nilai jawaban. Dari hasil perhitungan dengan mengalihkan setiap jawaban bobot yang sudah ditentukan maka didapat hasil sebagai berikut.

1. Analisa Pernyataan pertama Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan pertama adalah 42. Nilai rata-ratanya adalah 42/10 = 4,2 Prosentase nilainya adalah $4,2/5 \times 100 = 84\%$

ARTIKEL PENELITIAN

JoiTechs (Journal Of Information Technology and Computer Science) Vol. 2 No. 1 (2025)

2. Analisa pernyataan kedua

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan kedua adalah 39. Nilai rata-ratanya adalah 39/10 = 3.9 Prosentase nilainya adalah 3.9/5 x 100 = 78%

3. Analisa pernyataan ketiga

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan ketiga adalah 36. Nilai rata-ratanya adalah 36/10 = 3,5 Prosentase nilainya adalah 3.6/5 x 100 = 72%.

4. Analisa pernyataan keempat

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan keempat adalah 35. Nilai rata-ratanya adalah 35/10 = 3.5 Prosentase nilainya adalah $3,5/5 \times 100 = 70\%$.

5. Analisa pernyataan kelima

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan keempat adalah 45. Nilai rata-ratanya adalah 45/10 = 4,5. Prosentase nilainya adalah $4.5/5 \times 100 = 90\%$.

6. Analisa pernyataan keenam

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan keempat adalah 46. Nilai rata-ratanya adalah 46/10 = 4,6 Prosentase nilainya adalah 4,6/5 x 100 = 92%.

7. Analisa pernyataan ketujuh

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan keempat adalah 47. Nilai rata-ratanya adalah 47/10 = 4,7. Prosentase nilainya adalah $4,7/5 \times 100 = 94\%$.

8. Analisa pernyataan kedelapan

Dari tabel di atas dapat dilihat bahwa jumlah nilai dari 10 responden untuk pernyataan keempat adalah 42. Nilai rata-ratanya adalah 42/10 = 4,2. Prosentase nilainya adalah $4.2/5 \times 100 = 84\%$.

SIMPULAN

Berdasarkan hasi dari penelitian sistem pendukung keputusan penanganan gangguan jaringan menggunakan Metode Simple Additive Weighting untuk menentukan prioritas perbaikan pada gangguan jaringan pemerintah Kota Serang yang telah dilakukan, dapat disimpulkan (1) Sistem bisa memprioritaskan laporan gangguan jaringan pemerintah Kota Serang. (2) Sistem Menyajikan daftar laporan yang ditangani dengan urutan skala prioritas (3) Sistem mempercepat tahapan dari pelaporan sampai penanganan (4) Percepatan informasi penangan oleh teknisi lebih efektif dan efisien.

Dari data kuensioner yang didapat disimpulkan bahwa sistem penanganan gangguan jaringan mempunyai penilaian skala prioritas yang bagus, dapat menampilkan data skala prioritas dengan benar, tampilan aplikasi yang menarik, menu yang mudah dipahami, aplikasi memudahkan dalam penanganan gangguan jaringan, dapa menilai prioritas gangguan dengan benar, aplikasi dinilai sudah baik.

Berdasarkan analisa yang telah dilakukan maka didapatkan beberapa hal agar Sistem Pendukung keputusan penanganan gangguan jaringan menjadi lebih baik (1) Menambahkan fungsi sistem untuk mendelegasikan tugas berdasar teknisi yang akan menangani. (2) Menambahkan notifikasi peringatan dalam fungsi hapus data dan beberapa fungsi lainya. (3) Menambahkan inventory untuk menunjang status ketersediaan alat (4) Mengembangkan sistem ke aplikasi android.

DAFTAR PUSTAKA

- Harsiti, & Aprianti, H. (2017). Sistem Pendukung Keputusan Pemilihan Smartphone dengan Menerapkan Metode Simple Additive Weighting (SAW). Jurnal Sistem Informasi.
- Ishak, R. (2016). Sistem Pendukung Keputusan Pemilihan Penyuluh Lapangan Keluarga Berencana Teladan Dengan Metode Weighted Product. Sistem Pendukung Keputusan Pemilihan Penyuluh Lapangan Keluarga Berencana Teladan Dengan Metode Weighted Product. 7.
- Konsultan, C. S. (2022). Naskah Akademik Rancangan Peraturan Daerah tentang Sistem Pemerintah Berbasis Elektronik (SPBE) di Lingkungan Pemerintah Kota Serang. Kota Serang.
- Kota Serang, P. D. (2017). Peraturan Walikota Serang Nomor 18 tahun 2017. Kota Serang. Kusumadewi. (2006). Fuzzy Multi-Attribute Decision Making (FUZZY. Yogyakarta: Graha Ilmu.
- Mardheni, M., Safriadi, N., & Prihartini, N. (2017). Implementasi Metode Simple Additive Weighting (SAW) pada Sistem Pendukung Keputusan dalam Menentukan Prioritas Perbaikan Jalan. Jurnal Sistem dan Teknologi Informasi (JUSTIN).
- Peraturan Presiden Republik. (2018). Peraturan Presiden Republik Indonesia Nomor 95 Tahun 2018 Tentang Sistem Pemerintahan Berbasis Elektronik.
- PERPRES. (2023). Percepatan Transformasi Digital Dan Keterpaduan Layanan. Jakarta.
- Retna Siwi Padmawati, Dr. Dra., MA. (n.d.). https://fkkmk.ugm.ac.id/. Retrieved 0725, 2023, from https://fkkmk.ugm.ac.id/observasi-atau-observasi-partisipasi dalam-penelitian/
- Sari, A. M. (2023, 05 17). fikti.umsu.ac.id/apa-itu-sistem-pendukung-keputusan/. Retrieved from umsu.ac.id: https://fikti.umsu.ac.id/apa-itu-sistem-pendukung-keputusan/